
1 

 Learning Lab 2: Parallel Algorithms of Matrix Multiplication  
Lab Objective ............................................................................................................................... 1 
Exercise 1 – Stating the Matrix Multiplication Problem................................................................ 2 
Task 2 – Code the Seriial Matrix Multiplication Program ............................................................. 2 

Task 1 – Open the project SerialMatrixMult ............................................................................. 3 
Task 2 – Input the Matrix Size .................................................................................................. 3 
Task 3 – Input the Initial Data................................................................................................... 5 
Task 4 – Terminate the Program Execution............................................................................. 6 
Task 5 – Implement the Matrix Multiplication ........................................................................... 7 
Task 6 – Carry out the Computational Experiments................................................................. 8 

Exercise 3 – Develop the Parallel Matrix Multiplication Algorithm ............................................. 10 
Subtask Definition................................................................................................................... 10 
Analysis of Information Dependencies ................................................................................... 10 
Scaling and Distributing the Subtasks among the Processors............................................... 11 

Exercise 4 – Code the Parallel Matrix Multiplication Program ................................................... 12 
Task 1 – Open the Project ParallelMatrixMult ........................................................................ 12 
Task 2 –Create the Virtual Cartesian Topology ..................................................................... 13 
Task 3 – Input the Initial Data................................................................................................. 16 
Task 4 – Terminate the Parallel Program............................................................................... 18 
Task 5 – Distribute the Data among the Processes ............................................................... 19 
Task 6 – Code the Parallel Matrix Multiplication Program...................................................... 22 
Task 7 – Broadcast the Blocks of the Matrix A....................................................................... 22 
Task 8 – Cyclic Shift the Blocks of the Matrix B along the Processor Grid Columns............. 23 
Task 9 – Implement the Matrix Block Multiplication ............................................................... 25 
Task 10 – Gather the Results................................................................................................. 26 
Task 11 – Test the Parallel Program Correctness ................................................................. 27 
Task 12 – Carry out Computational Experiments................................................................... 28 

Discussions ................................................................................................................................ 29 
Exercises.................................................................................................................................... 29 
Appendix 1. The Program Code of the Serial Application for Matrix Multiplication ................... 29 
Appendix 2. The Program Code of Parallel Application for Matrix Multiplication....................... 31 

 
Matrix multiplication is one of the basic matrix computation problems. This lab considers the sequential 

matrix multiplication algorithm and the Fox parallel algorithm based on chessboard block scheme of data 
partitioning.  

 Lab Objective 

The objective of this lab is to develop a parallel program for matrix multiplication. The lab assignments 
include: 

• Exercise 1 – State the matrix multiplication problem. 
• Exercise 2 – Code the serial matrix multiplication program. 
• Exercise 3 – Develop the parallel matrix multiplication algorithm. 
• Exercise 4 – Code the parallel matrix multiplication program. 
Estimated time to complete this lab: 90 minutes. 
The lab students are assumed to be familiar with the related sections of the training material: Section 4 

“Parallel programming with MPI”, Section 6 “Principles of parallel method development” and Section 8 
“Parallel algorithms  of matrix multiplication”. Besides, the preliminary lab “Parallel programming with MPI” 
and Lab 1 “Parallel algorithms of matrix-vector multiplication” are assumed to have been done.  



 

 Exercise 1 – Stating the Matrix Multiplication Problem 

Multiplying the matrix A of size  by the matrix B of size nm× ln×  leads to obtaining the matrix C of size 
with each matrix C element defined according to the expression: lm×
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As it can be seen in (2.1), each element of the result matrix C is the scalar product of the corresponding row 
of the matrix  A and the column of the matrix B: 
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Figure. 2.1. The Element of the Result Matrix C is the Result of the Scalar Multiplication of the 

Corresponding Matrix A Row of the Matrix A and the Column of the Matrix B 

Thus, for instance, if the matrix A, which consists of  3 rows and 4 columns, is multiplied by the matrix B, 
consisting of 4 rows and 2 columns, we obtain the matrix C, which consists of 3 rows and 2 columns:  
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Figure. 2.2. The Example of Matrix Multiplication 

Thus, in order to obtain the result matrix C m×l operations of multiplying rows of the matrix A by columns 
of the matrix B should be executed. Each operation of this type includes multiplying row and column elements 
and further summing of the obtained products.  

The pseudo-code for implementation of the matrix-vector multiplication may look as follows (hereafter we 
assume that the matrices participating in multiplication are square, i.e.  are of size Size×Size): 

// Serial algorithm of matrix multiplication 
for (i=0; i<Size; i++) { 
  for (j=0; j<Size; j++) { 
    MatrixC[i][j] = 0;  
    for (k=0; k<Size; k++) { 
      MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j]; 
    } 
  } 
} 

 Task 2 – Code the Seriial Matrix Multiplication Program  

In order to do this Exercise, you should implement the serial matrix multiplication algorithm. The initial 
variant of the program to be developed is given in the project SerailMatrixMult, which contains a part of the 
source code and provides the necessary project parameters. While doing the Exercise you should add the code to 
input the matrix size, set the initial data, multiply the matrices and output the result matrix to the given version of 
the serial program.  
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 Task 1 – Open the project SerialMatrixMult  

Open the project SerialMatrixMult using the following steps: 
• Start the application Microsoft Visual Studio 2005, if it has not been started yet, 
• Execute the command Open→Project/Solution in the menu File, 
• Choose the folder с:\MsLabs\SerialMatrixMult in the dialog window Open Project, 
• Make the double click on the file SerialMatrixMult.sln or execute the command Open after choosing 

the file. 
After the project has been open in the window Solution Explorer (Ctrl+Alt+L), make the double click on 

the file of the initial code SerialMM.cpp, as it is shown in Figure 2.3. After that, the code, which has to be 
enhanced, will be opened in the workspace of the Visual Studio. 

 

 
Figure. 2.3. Opening the File SerialMM.cpp 

The file SerialMV.cpp provides access to the necessary libraries and also contains the initial version of the 
head function of the program – the function main. It provides the possibility to declare the variables and to print 
out the initial program message.  

Let us consider the variables, which are used in the main function of the application. The first two of them 
(pAMatrix and pBMatrix) are correspondingly the matrices used in matrix multiplication as arguments. The third 
variable pCMatrix is the matrix to be obtained as a result of multiplication. The variable Size defines the matrix 
size (let us assume that all the matrices are square of  Size×Size).  

  double* pAMatrix;  // First argument of matrix multiplication 
  double* pBMatrix;  // Second argument of matrix multiplication 
  double* pCMatrix;  // Result matrix 
  int Size;          // Size of matrices 

As in case of developing the matrix-vector multiplication algorithm, we use one-dimensional arrays, where 
matrices are stored rowwise. Thus, the element located at the intersection of i-th row and j-th column of the 
matrix in one-dimensional array has the index i*Size+j. 

The program code, which follows the declaration of variables, is the output of the initial message and 
waiting for pressing any button before the accomplishment of the application execution: 

  printf ("Serial matrix multiplication program\n"); 
  getch(); 

Now it is possible to make the first application run. Execute the command Rebuild Solution in the menu 
Build.  This command makes possible to compile the application. If the application is compiled successfully (in 
the lower part of the Visual Studio window there is the following message: "Rebuild All: 1 
succeeded, 0 failed, 0 skipped"), press the key F5 or execute the command Start Debugging of 
the menu Debug.  

Right after the code start the following message will appear in the command console:  
“Serial matrix multiplication program".  

Press any key to exit  the program.  

 Task 2 – Input the Matrix Size  

In order to input the initial data of the serial matrix multiplication program, we will develop the function 
ProcessInitialization. This function is aimed at inputting the matrix size, allocating the memory for the initial 
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matrices pAMatrix and pBMatrix and the result matrix pCMatrix, setting the element values of the initial 
matrices. Thus, the function should have the following heading:  

// Function for memory allocation and initialization of matrix elements 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size); 

At the first stage it is necessary to input the matrix size (to set the value of the variable Size). The following 
bold marked code should be added to the function ProcessInitialization: 

// Function for memory allocation and initialization of matrix elements 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size) { 
  // Setting the size of matrices 
  printf("\nEnter the size of matrices: "); 
  scanf("%d", &Size); 
  printf("\nChosen matrices size = %d \n", Size); 
} 

The user can enter the matrix size, which is read from the standard input stream stdin and stored in the 
integer variable Size.  After that the value of the variable Size is printed (Figure 2.4).  

After the line of the initial message you should add the call of the function, which initializes the process 
computations ProcessInitialization to the main function:  

void main() { 
  double* pAMatrix;  // First argument of matrix multiplication 
  double* pBMatrix;  // Second argument of matrix multiplication 
  double* pCMatrix;  // Result matrix 
  int Size;          // Size of matrices 
  time_t start, finish; 
  double duration; 
 
  printf ("Serial matrix multiplication program\n"); 
  ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size); 
  getch(); 
} 

Compile and run the application. Make sure that the value of the variable Size is set correctly. 

 
Figure. 2.4. Setting the Matrix Size  

We should control the input correctness as we have done in Lab 1. Let us arrange the check up of the 
matrix size and in case there is an error (i.e. the size is zero or negative) we will continue to ask for the matrix 
size until a positive number is entered. In order to implement this behavior we will insert the code, which inputs 
the matrix size, to the loop with the following condition:  

 
  // Setting the size of matrices 
  do { 
    printf("\nEnter size of matrices: "); 
    scanf("%d", &Size); 
    printf("\nChosen matrices' size = %d", Size); 
    if (Size <= 0) 
      printf("\nSize of objects must be greater than 0!\n");  
  } 
  while (Size <= 0); 
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Compile and run the application again. Try to enter a non-positive number as an matrix size. Make sure that 
invalid situations are processed correctly.  

 Task 3 – Input the Initial Data  

The initialization function must also provide memory allocation for storing the matrices. Add the bold 
marked code to the function ProcessInitialization: 

// Function for memory allocation and initialization of matrix elements 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size) { 
  // Setting the size of matrices 
  do { 
    <…> 
  } 
  while (Size <= 0); 
 
  // Memory allocation  
  pAMatrix = new double [Size*Size]; 
  pBMatrix = new double [Size*Size]; 
  pCMatrix = new double [Size*Size]; 
} 

Further, it is necessary to set the values of all the matrix elements: the matrices pAMatrix, pBMatrix and 
pCMatrix.  The values of the result matrix elements before the execution of matrix multiplication are equal to 
zero. In order to set the values of the matrix A and matrix B elements, we will develop the function 
DummyDataInitialization.  The heading and the implementation of the function are given below: 

// Function for simple initialization of matrix elements 
void DummyDataInitialization(double* pAMatrix, double* pBMatrix, int Size){ 
  int i, j;  // Loop variables 
 
  for (i=0; i<Size; i++) {  
    for (j=0; j<Size; j++) { 
      pAMatrix[i*Size+j] = 1; 
      pBMatrix[i*Size+j] = 1; 
    } 
  } 
} 

As it can be seen from the given code, this function provides setting matrix elements in rather a simple way: the 
values of all matrix elements are equal to 1. That is in case when the user chooses the matrix size equal to 4, the 
matrices will be determined as follows: 
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(setting the data by means of a random number generator will be discussed in Task 6). 
Add the call of the function DummyDataInitialization and the procedure of filling the result matrix with 

zeros to the function ProcessInitialization after allocating memory inside: 
// Function for memory allocation and initialization of matrix elements 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size) { 
 
  // Memory allocation  
  <…> 
 
  // Initialization of matrix elements 
  DummyDataInitialization(pAMatrix, pBMatrix, Size); 
  for (int i=0; i<Size*Size; i++) { 
    pCMatrix[i] = 0; 
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  } 
} 

In order to control the data input we will make use of the formatted matrix output function PrintMatrix, 
which was developed in the course of the execution of Lab 1. The code of the function is available in the project 
(more details about the function PrintMatrix are given in Task 3 of Exercise 2, Lab 1). Let us add the call of the 
function for printing out the objects pAMatrix and pBMatrix  to the main function of the application: 

  // Memory allocation and initialization of matrix elements 
  ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size); 
 
  // Matrix output 
  printf ("Initial A Matrix \n");  
  PrintMatrix(pAMatrix, Size, Size); 
  printf("Initial B Matrix \n"); 
  PrintMatrix(pBMatrix, Size, Size); 

Compile and run the application. Make sure that the data input is executed according to the above-
described rules (Figure 2.5). Run the application several times setting various matrix sizes  

 
Figure. 2.5. The Result of Program Execution after Completion of Task 3 

 Task 4 – Terminate the Program Execution  

Let us first develop the function for correct program termination, before implementing the matrix-vector 
multiplication. For this purpose it is necessary to deallocate the memory, which has been dynamically allocated 
in the course of the program execution. Let us develop the corresponding function ProcessTermination. The 
memory has been allocated for storing the initial matrices pAMatrix and pBMatrix, and also for storing the 
multiplication product pCMatrix. These matrices, consequently, should be given to the function 
ProcessTermination as arguments: 

// Function for computational process termination 
void ProcessTermination (double* pAMatrix, double* pBMatrix,  
  double* pCMatrix) { 
  delete [] pAMatrix; 
  delete [] pBMatrix; 
  delete [] pCMatrix; 
}  

The function ProcessTermination should be called at the end of the main function:  

  // Memory allocation and initialization of matrix elements 
  ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size); 
 
  // Matrix output 
  printf ("Initial A Matrix \n");  
  PrintMatrix(pAMatrix, Size, Size); 
  printf("Initial B Matrix \n"); 
  PrintMatrix(pBMatrix, Size, Size); 
 
// Computational process termination   

  ProcessTermination(pAMatrix, pBMatrix, pCMatrix);  

Compile and run the application. Make sure it is being executed correctly. 



 Task 5 – Implement the Matrix Multiplication 

Let us develop the main computational part of the program. In order to multiply matrices the function 
SerialResultCalculation is used. It gets the initial matrices pAMatrix and pBMatrix, the size of the matrices Size, 
and the result matrix pCMatrix  as input parameters.  

In accordance with the algorithm given in Exercise 1, the code of the function should be the following: 

// Function for matrix multiplication 
void SerialResultCalculation(double* pAMatrix, double* pBMatrix,  
  double* pCMatrix, int Size) { 
  int i, j, k;  // Loop variables 
  for (i=0; i<Size; i++) {  
    for (j=0; j<Size; j++) { 
      for (k=0; k<Size; k++) { 
        pCMatrix[i*Size+j] += pAMatrix[i*Size+k]*pBMatrix[k*Size+j]; 
      } 
    } 
  } 
} 

Let us call the function of matrix multiplication computation from the main program. In order to control the 
correctness of multiplication we will print out the result vector:  

  // Memory allocation and initialization of matrix elements 
  ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size); 
 
  // Matrix output 
  printf ("Initial A Matrix \n");  
  PrintMatrix(pAMatrix, Size, Size); 
  printf("Initial B Matrix \n"); 
  PrintMatrix(pBMatrix, Size, Size); 
 
  // Matrix multiplication 
  SerialResultCalculation(pAMatrix, pBMatrix, pCMatrix, Size); 
   
  // Printing the result matrix 
  printf ("\n Result Matrix: \n"); 
  PrintMatrix(pCMatrix, Size, Size); 
 
  // Computational process termination 
  ProcessTermination(pAMatrix, pBMatrix, pCMatrix); 

Compile and run the application. Analyze the results of the matrix multiplication algorithm. If the 
algorithm is executed correctly, the values of the elements of the result matrix must be equal to the order of the 
matrix (see Figure 2.6).  
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Figure. 2.6. The Result of Matrix Multiplication  

Carry out several computational experiments, changing the matrix sizes. 
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Figure. 2.7. The Result of Matrix Multiplication 

 Task 6 – Carry out the Computational Experiments  

In order to test the speed up of the parallel algorithm functioning, it is necessary to carry out experiments 
on calculating the sequential algorithm execution time. It is reasonable to analyze the algorithm execution time 
for considerably large matrices. We will set the elements of large matrices and vectors by means of a random 
data generator. For this purpose we will develop the  function RandomDataInitialization (the random number 
generator is initialized by the current time value): 

// Function for random initialization of matrix elements 
void RandomDataInitialization (double* pAMatrix, double* pBMatrix,  
  int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  for (i=0; i<Size; i++)  
    for (j=0; j<Size; j++) { 
      pAMatrix[i*Size+j] = rand()/double(1000); 
      pBMatrix[i*Size+j] = rand()/double(1000); 
    } 
} 

Let us call this function instead of the function DummyDataInitialization, which has been developed 
previously. The function DummyDataInitialization generated the data, which made possible to check the 
algorithm operation correctness easily.  

// Function for memory allocation and initialization of matrix elements 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size) { 
 
  // Memory allocation  
  <…> 
 
  // Random initialization of matrix elements 
  RandomDataInitialization(pAMatrix, pBMatrix, Size); 
  for (int i=0; i<Size*Size; i++) { 
    pCMatrix[i] = 0; 
  } 
} 

Compile and run the application. Make sure that the data is randomly generated.   
In order to determine the time, add the calls of the functions, which make possible to find out the program 

execution time or the execution time for a part of the program, to the resulting program. As previously we will 
use the following function: 

time_t clock(void); 

Let us add the computation and the output of the execution time of matrix-vector multiplication to the 
program code. For this purpose we will clock in before and after the call of the function SerialResultCalculation: 
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  // Matrix multiplication 
  start = clock(); 
  SerialResultCalculation(pAMatrix, pBMatrix, pCMatrix, Size); 
  finish = clock(); 
  duration = (finish-start)/double(CLOCKS_PER_SEC); 
   
  // Printing the result matrix 
  printf ("\n Result Matrix: \n"); 
  PrintMatrix(pCMatrix, Size, Size); 
 
  // Printing the time spent by matrix multiplication 
  printf("\n Time of execution: %f\n", duration); 

Compile and run the application. In order to carry out the computational experiments with large matrices, 
eliminate matrix printing (transform the corresponding code lines into comment). Carry out the computational 
experiments and register the results in the following table:  

Table 2.1. The Execution Time of the Serial Matrix Multiplication Program  

Test Number Matrix Size Execution Time (sec) 
1 10  
2 100  
3 500  
4 1,000  
5 1,500  
6 2,000  
7 2,500  
8 3,000  

In accordance with the computational algorithm of matrix-vector multiplication given in Exercise 1, 
obtaining the result matrix requires the Size×Size operations of multiplying the rows of the matrix pAMatrix by 
the columns of the matrix pBMatrix. Each operation of this type includes multiplying the row elements by 
column elements (Size operations) and further summing up of the obtained products (Size-1 operations). As a 
result, the total time of matrix multiplication may be determined by means of the following expression:  

τ⋅−⋅⋅⋅= )12(1 SizeSizeSizeT .        (2.3) 

where τ is the execution time of the basic computational operation.  
Let us fill out the table of comparison of the experiment execution time to the time, which may be obtained 

according to the formula (2.3). In order to compute the execution time  τ  of a single operation, as in the course 
of execution of Lab 1, we will apply the following technique: choose one of the experiments as a pivot one.  Let 
us divide the execution time of the pivot experiment by the number of the executed operations (the number of the 
operations may be calculated using formula (2.3)). Thus, we will calculate the execution time of a single 
operation. Then using this value we will calculate the theoretical execution time for the remaining experiments. 
It should be noted that the execution time of a single operation depends generally on the size of the matrices 
involved in multiplication (see Lab 1). That is why choosing the experiment to be used as the pivot one, we 
should be oriented at some average case.  

Calculate the theoretical execution time of matrix multiplication. Write the results in the following table: 

Table 2.2. The Comparison of the Experiment Execution Time for the Serial Matrix Multiplication 
Program to the Execution Time, which has been Computed Theoretically 

Basic Computational Operation Execution Time τ (sec): 
Test number Matrix Size Execution Time (sec) Theoretical Execution Time (sec) 

1 10   

2 100   
3 500   
4 1,000   
5 1,500   
6 2,000   
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7 2,500   
8 3,000   

 Exercise 3 – Develop the Parallel Matrix Multiplication Algorithm  

The chessboard block matrix presentation along with presenting matrices as sets of rows and columns 
(stripes) is widely used in the development of parallel methods of matrix multiplication. Let us discuss this 
method of matrix decomposition in detail.  

 Subtask Definition 

The chessboard block scheme of matrix partitioning is described in detail in subsection 7.2 of the training 
material and Exercise 3 of Lab 1. In case of this method of data distribution the initial matrices A, B and the 
result matrix C are presented as sets of blocks. To simplify the further explanations we will assume all the 
matrices are square of n×n size, the number of vertical blocks and the number of horizontal blocks are the same 
and are equal to q (i.e. the size of all block is equal to k×k, k=n/q). In case of this data presentation method 
multiplying the matrices A and B as blocks may be presented as follows: 
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where each block Cij of matrix C is defined in accordance with the expression:  
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In case of chessboard block data partitioning it is natural to define the basic computational subtasks on the 
basis of the computations performed over the matrix blocks. With regards to this we define the basic subtask as 
the procedure of computing of the elements of a block of the matrix C.  

To perform all the necessary computations the basic subtasks should have the corresponding sets of rows of 
the matrix A and columns of the matrix B. The allocation of all the necessary data in each subtask will inevitably 
lead to data doubling and to a considerable increase of the size of memory used. As a result, the computations 
must be arranged in such a way that the subtasks should contain only a part of the data necessary for 
computations at any given moment, and the access to the rest of the data should be provided by means of data 
transmission. One of the possible approaches (the Fox algorithm) will be discussed further in this Exercise.  

 Analysis of Information Dependencies  

So, parallel computations for matrix multiplication are based on chessboard block data distribution. Also 
two conditions take place: 1) basic subtasks is responsible for computation of separate blocks of the matrix C; 2) 
each subtask contains only one block of the matrix A and one block of the matrix B at each iteration.  The indices 
of the blocks of the matrix C contained in the subtasks are used for enumeration of the subtasks. Thus, subtask 
(i,j) computes block Cij. So the set of subtasks forms a square grid, which corresponds to the structure of the 
block presentation of the matrix C.  

In accordance with the Fox algorithm each basic subtasks (i,j) contains four matrix blocks: 
− The block Cij of the matrix C, computed by the subtask, 
− The block Aij of the matrix A, located in the subtask before the beginning of computations, 
− Blocks A'ij , B'ij  of the matrices A and B, obtained by the subtask in the course of computations. 

Parallel algorithm execution includes: 
• The initialization stage. Each subtask (i,j) obtains blocks Aij, Bij. All elements of blocks Cij in all 

subtasks are set to zero; 
• The computation stage. At this stage the following operations are carried out at each iteration  l, 0≤ l<q:  

− For each row i, 0≤ i<q,  the block Aij of subtask(i,j) is transmitted to all the subtasks of  the same grid 
row; index j, which defines the position of the subtask in the row, is computed according to the 
following expression:  

j = ( i+l ) mod q,     (2.4) 
    where mod  is operation of obtaining the remainder of the integer division; 



− Blocks A'ij, B'ij obtained by each subtask (i,j) as a result of block transmission are multiplied and 
added to block Cij 

ijijijij BACC ′×′+= ; 

− Blocks B'ij of each subtask (i,j) are transmitted to the subtasks, which are upper neighbors in the grid 
columns (the first row blocks are transmitted to the last row of the grid). 

To illustrate these rules the state of blocks in each subtask in the course of executing iterations of the 
computation stage is given in Figure 2.8 (for the grid of 2×2). 
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Figure. 2.8. The State of Blocks in Each Subtask in the Course of Execution of the Fox Algorithm 
Iterations  

Scaling and Distributing the Subtasks among the Processors 

The number of blocks in this scheme of parallel computations may vary depending on the choice of their 
sizes. These sizes may be chosen so that the total number of the basic subtasks coincide with the number of 
processors p. Thus, for instance, in the simplest case when the number of processors may be presented as p=δ2 
(i.e. it is a perfect square), the number of blocks in the matrices vertically and horizontally may be chosen equal 
to δ (i.e. q=δ). This way to define the number of blocks makes the amount of computations in each subtask the 
same and, thus, perfect balancing of the computational load is achieved. In a more general case, when the 
number of processors and the sizes of matrices are arbitrary, computational load may not be absolutely equal. 
Nevertheless, if the choice of parameters is adequate, the computational load may be distributed among the 
processors equally with adequate accuracy.  

To execute the Fox algorithm efficiently the set of available processors should be arranged as a square grid, 
as basic subtasks in the Fox algorithm are presented as a square grid and blocks are transmitted to rows and 
columns of the subtask grid in the course of computations. In this case it is possible to immediately map the set 
of subtasks onto the set of processors locating the basic subtasks (i,j) on the processor Pi,j. The adequate structure 
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of the data transmission network may be provided at the physical level, if the network topology is a grid or a 
complete graph.  

Exercise 4 – Code the Parallel Matrix Multiplication Program 

To do this Exercise you should develop the parallel program for matrix multiplication based on the Fox 
algorithm. This Exercise is aimed at:  

• Enhancing the practical knowledge on the development of the parallel matrix computations based on 
chessboard block data distribution, 

• Getting experience in developing more complicated parallel programs 
• Getting familiar with the use of communicators and virtual topologies in MPI. 

 Task 1 – Open the Project ParallelMatrixMult  

Open the project ParallelMatrixMult using the following steps: 
• Start the application Microsoft Visual Studio 2005, if it has not been started yet, 
• Execute the command Open→Project/Solution in the menu File, 
• Choose the folder с:\MsLabs\ParallelMatrixMult in the dialog window Open Project; 
• Make the double click on the file ParallelMatrixMult.sln or select it and execute the command Open.  
After the project has been open in the window Solution Explorer (Ctrl+Alt+L), make the double click on 

the file of the initial code ParallelMM.cpp, as it is shown in Figure 2.9. After that, the code, which has to be 
modified, will be opened in the workspace of the Visual Studio. 

 
Figure. 2.9. Opening the File ParallelMM.cpp with the Use of the Solution Explorer 

The main function of the parallel program to be developed is located in the file ParallelMV.cpp  and 
provides access to the necessary libraries and contains the declarations of the necessary variables, the calls of the 
initialization function and the function terminating the execution environment of MPI program, the function 
determining the number of available processes and process ranks:   

int ProcNum = 0;      // Number of available processes  
int ProcRank = 0;     // Rank of current process 
 
void main(int argc, char* argv[]) { 
  double* pAMatrix;  // First argument of matrix multiplication 
  double* pBMatrix;  // Second argument of matrix multiplication 
  double* pCMatrix;  // Result matrix 
  int Size;          // Size of matrices 
  double Start, Finish, Duration; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  if (ProcRank == 0) 
    printf("Parallel matrix multiplication program\n"); 
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  MPI_Finalize(); 
} 

It should be noted that the variables ProcNum and ProcRank have been declared global as in case of the 
development of parallel matrix-vector multiplication program (see Lab 1).  

The following functions are copied from the the serial matrix multiplication program: 
DummyDataInitialization, RandomDataInitialization, SerialResultCalculation, PrintMatrix (the purposes of the 
functions are considered in detail in Exercise 2 of Lab). These functions may be also used in the parallel 
program. Besides, the preliminary versions for the functions of the computation initialization 
(ProcessInitialization) and process termination (ProcessTermination) are also located there. 

Compile and run the applications using the s Visual Studio. Make sure that the inital message "Parallel 
matrix multiplication program" is output into the command console. 

 Task 2 –Create the Virtual Cartesian Topology  

According to the parallel computation scheme described in Exercise 3, it is necessary to arrange the 
available MPI program processes as a virtual topology in the form of a two-dimensional square grid in order to 
carry out the Fox algorithm efficiently. It is only possible that the number of the available processes is a perfect 
square. 

Before we start the execution of the parallel algorithm let us check if the number of the available processes 
is a perfect square, i.e that ProcNum = GridSize×GridSize.  If it is not so, we will output the diagnostic message. 
We will continue the execution of the application only if this condition is met.  

Let us call the value GridSize the size of the grid. This value will be used in data distribution and data 
collection. It will be also used in the execution of the Fox algorithm iterations. Let us declare the corresponding 
global variable and set its value.   

int ProcNum = 0;      // Number of available processes  
int ProcRank = 0;     // Rank of current process 
int GridSize;         // Size of virtual processor grid 
 
void main(int argc, char* argv[]) { 
<…> 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  GridSize = sqrt((double)ProcNum); 
  if (ProcNum != GridSize*GridSize) { 
    if (ProcRank == 0) { 
      printf ("Number of processes must be a perfect square \n"); 
    } 
  } 
  else { 
    if (ProcRank == 0) 
      printf("Parallel matrix multiplication program\n"); 
    // Place the code of the parallel Fox algorithm here 
  } 
  MPI_Finalize(); 
} 

Let us develop the function CreateGridCommunicators, which will create a communicator as a two-
dinemsional square grid, determine the coordinates of each process in the grid and create communicators for 
each row and each column separately.  
// Function for creating the two-dimensional grid communicator and 
// communicators for each row and each column of the grid  
void CreateGridCommunicators(); 

The following function is intended in MPI for creating the Cartesian topology: 

int MPI_Cart_create(MPI_Comm oldcomm, int ndims, int *dims,  
  int *periods, int reorder, MPI_Comm *cartcomm),  
where: 
- oldcomm  - the initial communicator, 
- ndims    - the dimension of the Cartesian grid, 
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- dims     - the array of the length ndims, which sets the number of 
             processes  in each grid dimension, 
- periods  - the array of the length ndims, which determines whether the  
             grid is periodical along each dimension, 
- reorder  - the allowability of changes of the process enumeration, 
- cartcomm – the communicator being created with the Cartesian process  
             topology. 

So in order to create the Cartesian topology it is necessary to determine two arrays: the first one DimSize 
determines the size of each grid dimension, while the second one Periodic determines whether the grid is 
periodic along each dimension. As we are to create a two-dimensional square grid, both DimSize elements must 
be determined in the following way: [ ] [ ] ProcNumDimSizeDimSize == 10 . According to the scheme of the 
parallel computations (Exercise 3), we will have to perform a cyclic shift along the processor grid columns. 
Therefore, the second dimension of the Cartesian topology has to be periodic. As a result of the execution of the 
function MPI_Cart_create the new communicator will be stored in the variable cartcomm. Thus, it is necessary 
to declare a variable for storing the new communicator and give it to the function MPI_Cart_create as an 
argument. As the grid communicator is widely used in all functions of the parallel application, let us declare the 
corresponding variable as a global one. All the communicators in the MPI library are of MPI_Comm type. 

Let us add the call of the function for creating the grid to the function CreateGridCommunicators: 

int ProcNum = 0;      // Number of available processes  
int ProcRank = 0;     // Rank of current process 
int GridSize;         // Size of virtual processor grid 
MPI_Comm GridComm;    // Grid communicator 
<…> 
// Function for creating the two-dimensional grid communicator and 
// communicators for each row and each column of the grid  
void () { CreateGridCommunicators
  int DimSize[2];  // Number of processes in each dimension of the grid 
  int Periodic[2]; // =1, if the grid dimension should be periodic 
 
  DimSize[0] = GridSize; 
  DimSize[1] = GridSize; 
 
  Periodic[0] = 1; 
  Periodic[1] = 1; 
 
  // Creation of the Cartesian communicator  
  MPI_Cart_create(MPI_COMM_WORLD, 2, DimSize, Periodic, 1, &GridComm);   
} 

In order to determine the Cartesian coordinates of the process according to its rank, we may use the 
following function: 

int MPI_Card_coords(MPI_Comm comm,int rank,int ndims,int *coords),  
where: 
- comm   – the communicator with grid topology, 
- rank   - the rank of the process, for which  the Cartesian coordinates  
           are determined, 
- ndims  - the dimension of the gird, 
- coords – the Cartesian process coordinates returned by the function. 

As we have created a two-dimensional grid, each process in the grid has two coordinates, which correspond 
to the row number and the column number. The process is located at the intersection of these row and column. 
Let us declare the global variable, i.e. the array for storing the coordinates of each process, and define the 
coordinates by means of the function MPI_Cart_coords: 

int GridSize;         // Size of virtual processor grid 
MPI_Comm GridComm;    // Grid communicator 
int GridCoords[2];    // Coordinates of current processor in grid 
<…> 
// Function for creating the two-dimensional grid communicator and 
// communicators for each row and each column of the grid  
void CreateGridCommunicators() { 
  <…> 
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  // Creation of the Cartesian communicator  
  MPI_Cart_create(MPI_COMM_WORLD, 2, DimSize, Periodic, 1, &GridComm);   
 
  // Determination of the cartesian coordinates for every process 
  MPI_Cart_coords(GridComm, ProcRank, 2, GridCoords); 
} 

Let us create communicators for each process grid row and column. For this purpose the MPI function, 
which make possible to divide the grid into subgrids, can be used (more detailed information of the use of the 
function MPI_Cart_sub is given in Section 4 “Parallel programming with MPI” of the  training material): 

int MPI_Card_sub(MPI_Comm comm, int *subdims, MPI_Comm *newcomm), 
where: 
- comm    - the initial communicator with a grid topology, 
- subdims – the array for defining, which dimensions should remain in the    
            subgrid to be created, 
- newcomm – the communicator with the subgrid, which is being created. 

Let us declare the communicators for the row and the column as global variables and divide the already 
created communicator GridComm as follows: 

MPI_Comm GridComm;    // Grid communicator 
MPI_Comm ColComm;     // Column communicator 
MPI_Comm RowComm;     // Row communicator 
<…> 
// Function for creating the two-dimensional grid communicator and 
// communicators for each row and each column of the grid  
void CreateGridCommunicators() { 
  int DimSize[2];  // Number of processes in each dimension of the grid 
  int Periodic[2]; // =1, if the grid dimension should be periodic 
  int Subdims[2];  // =1, if the grid dimension should be fixed 
 
  <…> 
 
  // Determination of the cartesian coordinates for every process 
  MPI_Cart_coords(GridComm, ProcRank, 2, GridCoords); 
 
  // Creating communicators for rows 
  Subdims[0] = 0; // Dimension is fixed 
  Subdims[1] = 1; // Dimension belong to the subgrid 
  MPI_Cart_sub(GridComm, Subdims, &RowComm); 
   
  // Creating communicators for columns 
  Subdims[0] = 1; // Dimension belong to the subgrid 
  Subdims[1] = 0; // Dimension is fixed 
  MPI_Cart_sub(GridComm, Subdims, &ColComm); 
} 

Let us call the function CreateGridCommunicators from the main function of the parallel application: 

void main(int argc, char* argv[]) { 
  double* pAMatrix;  // First argument of matrix multiplication 
  double* pBMatrix;  // Second argument of matrix multiplication 
  double* pCMatrix;  // Result matrix 
  int Size;          // Size of matrices 
  double Start, Finish, Duration; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  GridSize = sqrt((double)ProcNum); 
  if (ProcNum != GridSize*GridSize) { 
    if (ProcRank == 0) { 
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      printf ("Number of processes must be a perfect square \n"); 
    } 
  } 
  else { 
    if (ProcRank == 0) 
      printf("Parallel matrix multiplication program\n"); 
 
    // Grid communicator creating 
    CreateGridCommunicators(); 
  } 
 
  MPI_Finalize(); 
} 

Compile the application. If you find errors, correct them, comparing your code to the code given in the 
manual. Run the application several times changing the number of the available processes. Make sure that if the 
available number of processes is not a perfect square, the diagnostic message is output and the application 
terminates its operation.   

 Task 3 – Input the Initial Data 

At the following stage of the parallel application development, it is necessary to set the matrix sizes and to 
allocate memory for storing the initial matrices and their blocks. According to the parallel computation scheme 
four matrix blocks are located on each process at any given moment of time: two blocks of the matrix A, a block 
of the matrix B and a block of the result matrix C (see Exercise 3). Let us define the variables for storing the 
matrix blocks and the sizes of the blocks:  

void main(int argc, char* argv[]) { 
  double* pAMatrix;      // First argument of matrix multiplication 
  double* pBMatrix;      // Second argument of matrix multiplication 
  double* pCMatrix;      // Result matrix 
  int Size;              // Size of matrices 
  int BlockSize;         // Sizes of matrix blocks 
  double *pMatrixAblock; // Initial block of matrix A 
  double *pAblock;       // Current block of matrix A 
  double *pBblock;       // Current block of matrix B 
  double *pCblock;       // Block of result matrix C 
   
  double Start, Finish, Duration; 

Let us develop the function ProcessInitialization in order to input the matrix sizes, set the matrix block 
sizes, allocate memory for storing them and initialize the matrix elements.  

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock, 
  double* &pMatrixAblock, int &Size, int &BlockSize ); 

Let us start with inputting the sizes. For simplicity, we will assume, as previously, that all the matrices 
involved in multiplication, are square of the order Size×Size. The size Size must provide the matrix distribution 
among the processes in equal square blocks, i.e. the size Size must be divisible by the processor grid size 
GridSize. 

In order to input the size we will implement the dialogue with the user as it was done in case of Lab 1. If 
the user enters an incorrect number he is suggested repeating the input. The dialogue is carried out only on the 
root process. It should be noted that the root process is usually the process, which has the rank 0 in the 
communicator MPI_COMM_WORLD. When the matrix size is entered correctly, the value of the variable  Size 
is broadcast to all the processes: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock, 
  double* &pTemporaryAblock, int &Size, int &BlockSize ) { 
  if (ProcRank == 0) { 
    do { 
      printf("\nEnter the size of the matrices: "); 
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      scanf("%d", &Size); 
      if (Size%GridSize != 0) { 
        printf ("Size of matrices must be divisible by the grid size! \n"); 
      } 
    } while (Size%GridSize != 0); 
  } 
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
} 

After all matrix sizes are set, it is possible to determine the size of matrix blocks and to allocate memory for 
storing the initial matrices, the result matrix, the matrix blocks (the initial matrices are available only on the root 
process): 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock, 
  double* &pMatrixAblock, int &Size, int &BlockSize ) { 
  <…>  
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 
  BlockSize = Size/GridSize; 
 
  pAblock = new double [BlockSize*BlockSize]; 
  pBblock = new double [BlockSize*BlockSize]; 
  pCblock = new double [BlockSize*BlockSize]; 
  pMatrixAblock = new double [BlockSize*BlockSize]; 
 
  if (ProcRank == 0) { 
    pAMatrix = new double [Size*Size]; 
    pBMatrix = new double [Size*Size]; 
    pCMatrix = new double [Size*Size]; 
  } 
} 

In order to determine the elements of the initial matrices we will use the function  
DummyDataInitialization, which was developed in the course of the realization of the serial program of matrix 
multiplication: 

// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock, 
  double* &pMatrixAblock, int &Size, int &BlockSize ) { 
  <…>  
  if (ProcRank == 0) { 
    pAMatrix = new double [Size*Size]; 
    pBMatrix = new double [Size*Size]; 
    DummyDataInitialization(pAMatrix, pBMatrix, Size); 
  } 
}   

The block of the result matrix pCblock serves for summing the products of the block multiplication. In 
order to store the sums correctly it is necessary to set all its elements of this block to zero initially: 
// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* pCblock, 
  double* &pMatrixAblock, int &Size, int &BlockSize ) { 
  <…>  
  if (ProcRank == 0) { 
    <…> 
  } 
  for (int i=0; i<BlockSize*BlockSize; i++) { 
    pCblock[i] = 0; 
  } 
}   



Let us call the function ProcessInitialization from the main function of the parallel application. In order to 
control the correctness of the initial data input, we will use the function of the formatted matrix output 
PrintMatrix: let us print out the initial matrices A and B on the root process.  

void main(int argc, char* argv[]) { 
  <…>   
  // Memory allocation and initialization of matrix elements 
  ProcessInitialization ( pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock, 
    pCblock, pMatrixAblock, Size, BlockSize ); 
  if (ProcRank == 0) { 
    printf("Initial matrix A \n"); 
    PrintMatrix(pAMatrix, Size, Size); 
    printf("Initial matrix B \n"); 
    PrintMatrix(pBMatrix, Size, Size); 
  } 
  MPI_Finalize(); 
} 

Compile and run the application. Make sure that the dialogue for the input of matrix sizes makes possible to 
enter only the correct matrix size value. Analyze the value of the initial matrix elements. If the data is set 
correctly, all the initial matrix elements must be equal to 1 (see Figure 2.10). 

 
Figure. 2.10. Initial Data Setting  

 Task 4 – Terminate the Parallel Program 

In order to terminate the application at each stage of development, we should develop the function of 
correct termination. For this purpose we should deallocate the memory, which has been allocated dynamically in 
the course of the program execution. Let us develop the corresponding function ProcessTermination. The 
memory for storing the initial matrices pAMatrix and pBMatrix and for storing the result matrix pCMatrix, was 
allocated on the root process; besides, memory was allocated on all the processes for storing the four matrix 
blocks pMatrixAblock, pAblock, pBblock, pCblock. All these objects must be given to the function 
ProcessTermination as arguments: 

// Function for computational process termination 
void ProcessTermination (double* pAMatrix, double* pBMatrix,  
  double* pCMatrix, double* pAblock, double* pBblock, double* pCblock,  
  double* pMatrixAblock) { 
  if (ProcRank == 0) { 
    delete [] pAMatrix;  
    delete [] pBMatrix; 
    delete [] pCMatrix; 
  } 
  delete [] pAblock; 
  delete [] pBblock; 
  delete [] pCblock; 
  delete [] pMatrixAblock; 
} 

The call of the process termination function must be executed immediately before the call of the 
termination of the parallel program: 
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    // Process termination 
    ProcessTermination(pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock, 
      pCblock, pMatrixAblock); 
  } 
  MPI_Finalize(); 
} 

Compile and run the application. Make sure that it operates correctly. 

 Task 5 – Distribute the Data among the Processes  

In accordance with the parallel computation scheme, the initial matrices to be multiplied are located on the 
root process. The root process, i.e. the process with rank 0, is located in the upper left hand corner of the 
processor grid.  

It is necessary to distribute the matrices blockwise among the processes so that the blocks Aij and Bij have to 
be located on the process placed at the intersection of the i-th row and j-th column of the processor grid. The 
matrices and the matrix blocks are stored in one-dimensional arrays rowwise. The matrix block is not stored by a 
continuous sequence of elements in the matrix storage array. Thus, it is impossible to perform blockwise 
distribution using the standard data types from the library MPI.  

To arrange the transmission of blocks within the same communication operation, it is possible to form a 
derived data type by means of MPI. This approach is intended to be as an assignment for homework. In this lab 
let us use the following two-stage scheme of data distribution. At the first stage the matrix is divided into 
horizontal stripes. Each of the stripes contains BlockSize rows. These rows are distributed among the processes, 
which compose the left column of the processor grid (Figure 2.11).  

 

 
Figure. 2.11. The First Stage of Data Distribution  

Each stripe is further divided into blocks among the processes, which compose the processor grid rows. It 
should be noted that the distribution of the stripes into blocks will be executed sequentially by means of 
distributing the rows of the stripe with the use of the function MPI_Scatter (Figure 2.12).  

 
Figure. 2.12. The Second Stage of Data Distribution  

In order to distribute the matrix among the processor of grid processes blockwise, we will realize the 
function CheckerboardMatrixScatter.  

// Function for checkerboard matrix decomposition 
void CheckerboardMatrixScatter(double* pMatrix, double* pMatrixBlock,  
  int Size, int BlockSize); 
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This function has the matrix pMatrix, which is stored on the root process, as arguments. It also gets the 
array pMatrixBlock for storing the matrix block on each of the parallel application processes, the matrix size Size 
and the matrix block size BlockSize as arguments.  

At the first stage it is necessary to divide the matrix among the processes, which compose the left column 
of the process grid, in horizontal stripes. For this purpose we will use the function MPI_Scatter in the 
communicator ColComm. It should be noted that we have already created GridSize communicators ColComm in 
the parallel application. In order to determine the communicator, which corresponds to the left column of the 
processor grid we will use the values recorded in the GridCoords. The function MPI_Scatter will be called only 
in the processes, which have the value of the second coordinate equal to zero (i.e. the process is located in the 
left column). 

// Function for checkerboard matrix decomposition 
void CheckerboardMatrixScatter(double* pMatrix, double* pMatrixBlock,  
  int Size, int BlockSize) { 
  double * pMatrixRow = new double [BlockSize*Size]; 
  if (GridCoords[1] == 0) { 
    MPI_Scatter(pMatrix, BlockSize*Size, MPI_DOUBLE, pMatrixRow, 
      BlockSize*Size, MPI_DOUBLE, 0, ColComm); 
  } 
} 

It should be noted that for temporary storage of the horizontal matrix stripe we will use the array 
pMatrixRow. 

At the second stage it is necessary to distribute each row of the horizontal matrix stripe along the rows of 
the processor grid. Let us again use the function MPI_Scatter in the communicator RowComm. After the 
execution of these operations, we will deallocate the previously allocated memory: 

// Function for checkerboard matrix decomposition 
void CheckerboardMatrixScatter(double* pMatrix, double* pMatrixBlock,  
  int Size, int BlockSize) { 
  double * pMatrixRow = new double [BlockSize*Size]; 
  if (GridCoords[1] == 0) { 
    MPI_Scatter(pMatrix, BlockSize*Size, MPI_DOUBLE, pMatrixRow, 
      BlockSize*Size, MPI_DOUBLE, 0, ColComm); 
  } 
 
  for (int i=0; i<BlockSize; i++) { 
    MPI_Scatter(&pMatrixRow[i*Size], BlockSize, MPI_DOUBLE,  
      &(pMatrixBlock[i*BlockSize]), BlockSize, MPI_DOUBLE, 0, RowComm); 
  } 
  delete [] pMatrixRow; 
} 

In order to execute the Fox algorithm it is necessary to distribute blockwise the matrix A (the matrix blocks 
are stored in the variable pMatrixABlock) and the matrix В (the matrix blocks are stored in the variable pBblock). 
Let us develop the function DataDistribution, which provides the distribution of these matrices: 

// Function for data distribution among the processes 
void DataDistribution(double* pAMatrix, double* pBMatrix,  
  double* pMatrixAblock, double* pBblock, int Size, int BlockSize) { 
  CheckerboardMatrixScatter(pAMatrix, pMatrixAblock, Size, BlockSize); 
  CheckerboardMatrixScatter(pBMatrix, pBblock, Size, BlockSize); 
} 

Let us call the function of data distribution from the main parallel application function. 

void main(int argc, char* argv[]) { 
  <…>   
  // Memory allocation and initialization of matrix elements 
  ProcessInitialization ( pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock, 
    pCblock, pMatrixAblock, Size, BlockSize ); 
  if (ProcRank == 0) { 
    printf("Initial matrix A \n"); 
    PrintMatrix(pAMatrix, Size, Size); 
    printf("Initial matrix B \n"); 
    PrintMatrix(pBMatrix, Size, Size); 
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  } 
   
  // Data distribution among the processes 
  DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock, Size, 
    BlockSize); 
 
  MPI_Finalize(); 
} 

In order to control the correctness of initial data distribution we will make use of debugging print. Let us 
develop the function, which will print sequentially the matrix blocks on all the processes. Let us call the function 
TestBlocks.  

// Test printing of the matrix block  
void TestBlocks (double* pBlock, int BlockSize, char str[]) { 
  MPI_Barrier(MPI_COMM_WORLD); 
  if (ProcRank == 0) { 
    printf("%s \n", str); 
  } 
  for (int i=0; i<ProcNum; i++) { 
    if (ProcRank == i) { 
      printf ("ProcRank = %d \n", ProcRank); 
      PrintMatrix(pBlock, BlockSize, BlockSize); 
    } 
    MPI_Barrier(MPI_COMM_WORLD); 
  } 
}  

Let us call the function of printing the distributed data from the function main :  

    // Data distribution among the processes 
    DataDistribution(pAMatrix, pBMatrix, pMatrixABlock, pBblock, Size, 
      BlockSize); 
    TestBlocks(pMatrixAblock, BlockSize, "Initial blocks of matrix A"); 
    TestBlocks(pBblock, BlockSize, "Initial blocks of matrix B"); 
  } 

Compile the application. If you find errors in the process of compiling, correct them, comparing your code 
to the code given in the manual. Run the application. Make sure that the data is distributed correctly (Figure 
2.13):   
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Figure. 2.13. The Initial Data Distribution in Case if the Application is Run Using Four Processes and 
the Matrix Size is Equal to Four 

Change the initial data setting. In order to define the initial matrix elements, use the function 
RandomDataInitialization instead of the function DummyDataInitialization.  Compile and run the application. 
Make sure that the matrices are distributed among the processes correctly.  

 Task 6 – Code the Parallel Matrix Multiplication Program 

The function ParallelResultCalculation executes the parallel Fox algorithm of matrix multiplication. The 
matrix blocks and their sizes must be given to the function as its arguments: 
void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  
  double* pBblock, double* pCblock, int BlockSize); 

According to the scheme of parallel computations described in Exercise 3, it is necessary to carry out 
GridSize iterations in order to execute matrix multiplication with the use of Fox algorithm. Each of the iterations 
consists of the execution of the following operations:  

• The broadcast of the matrix A block along the processor grid row (to execute the step we should 
develop the function ABlockCommunication),  

• The multiplication of matrix blocks (to carry out the multiplication of matrix blocks we may use the 
function SerialResultCalculation, which was implemented in the course of the development of the serial matrix 
multiplication program), 

• The cyclic shift of the matrix B blocks along the column of the processor grid (the function 
ВBlockCommunication).  

Thus, the code executing the Fox algorithm of matrix multiplication is the following: 
// Function for parallel execution of the Fox method 
void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  
  double* pBblock, double* pCblock, int BlockSize) { 
  for (int iter = 0; iter < GridSize; iter ++) { 
    // Sending blocks of matrix A to the process grid rows  
    ABlockCommunication(iter, pAblock, pMatrixAblock, BlockSize); 
 
    // Block multiplication 
    BlockMultiplication( pAblock, pBblock, pCblock, BlockSize ); 
 
    // Cyclic shift of blocks of matrix B in process grid columns  
    BblockCommunication ( pBblock, BlockSize, ColComm ); 
  } 
} 

Let us consider these operations in detail in the following exercises of the lab. 

 Task 7 – Broadcast the Blocks of the Matrix A  

So at the beginning of each algorithm iteration iter a process is selected for each processor grid row, which 
will send its block of the matrix A to the processes of the corresponding grid row. The number of the process 
Pivot in the row is determined according to the following expression:  

Pivot = (i+iter) mod GridSize,  

where i is the number of the processor grid row, for which we determine the number of the broadcasting process 
(the number of the row for each process can be determined by the first value in the array GridCoords) and mod is 
the operation of calculating the remainder of the division. Thus, the process, which has the value of the second 
coordinate GridCoords coinciding with Pivot is the sending process at each iteration. After the number of the 
sending process has been determined, it is necessary to broadcast the block of the matrix A along the row.  Let us 
do it with the use of the function MPI_Bcast in the communicator RowComm. Here we will need an additional 
block of matrix A: the first block pMatrixAblock stores the block, which was located on this process before the 
beginning of the computations, the block pAblock stores the matrix block, which participates in multiplication at 
this algorithm iteration. Before broadcasting the block pMatrixAblock is copied to the array pAblock, and then 
the array pAblock is broadcast to the row processes. 

// Broadcasting blocks of the matrix A to process grid rows  
void ABlockCommunication (int iter, double *pAblock, double* pMatrixAblock, 
  int BlockSize) { 
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  // Defining the leading process of the process grid row  
  int Pivot = (GridCoords[0] + iter) % GridSize; 
   
  // Copying the transmitted block in a separate memory buffer 
  if (GridCoords[1] == Pivot) { 
    for (int i=0; i<BlockSize*BlockSize; i++) 
      pAblock[i] = pMatrixAblock[i]; 
  } 
   
  // Block broadcasting 
  MPI_Bcast(pAblock, BlockSize*BlockSize, MPI_DOUBLE, Pivot, RowComm); 
} 

Let us control the correctness of this stage execution. For this purpose let us add the call of the function 
ParallelResultCalculation to the main function of the parallel application. To provide the program compilation 
transform calls of the functions of matrix block multiplication (SerialResultCalculation) and the cyclic shift of 
matrix block B (BblockCommunication), which have not been realized yet into comment (in the function 
ParallelResultCalculation).  

It should be noted that at this moment the function RandomDataInitialization is being used to generate the 
initial matrix values (we use this setting to check the correctness of the data distribution stage execution). After 
broadcasting the blocks of the matrix A, we will print out the values stored in the blocks pAblock on all the 
processors:   

// Function for parallel execution of the Fox method 
void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  
  double* pBblock, double* pCblock, int BlockSize) { 
  for (int iter = 0; iter < GridSize; iter ++) { 
    // Sending blocks of matrix A to the process grid rows  
    ABlockCommunication(iter, pAblock, pMatrixAblock, BlockSize); 
    if (ProcRank == 0)  
      printf((“Iteration number %d \n”, iter); 
    TestBlocks(pAblock, BlockSize, “Block of A matrix”); 
 
    // Block multiplication 
    // BlockMultiplication ( pAblock, pBblock, pCblock, BlockSize ); 
 
    // Cyclic shift of blocks of matrix B in process grid columns  
    // BblockCommunication ( pBblock, BlockSize, ColComm ); 
  } 
} 

Compile and run the application using 9 processors. Check the correctness broadcasting the blocks of the 
matrix A. For this purpose compare the blocks located on the processes at each iteration of the Fox algorithm to 
the output executed after the accomplishment of the function DataDistribution. The number of the block, which 
is located on all the processors of the row i must be calculated according to formula (2.4). 

 Task 8 – Cyclic Shift the Blocks of the Matrix B along the Processor Grid Columns  

In the course of matrix block multiplication it is necessary to perform the cyclic shift of blocks of the 
matrix B along the processor grid columns (Figure 2.14). 
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Figure. 2.14. The Cyclic Shift of Blocks of the Matrix B along the Processor Grid  

This shift may be performed in several ways. The most evident approach is to arrange the sequential 
sending and receiving the matrix blocks by means of the functions MPI_Send and MPI_Receive (detailed 
information about the functions may be obtained in Section 4 of the training material). The problem is that it is 
hard to perform this sequence so as to avoid deadlock situations, i.e. for instance, avoid the situations when all 
the processes start blocking receiving operations at the same time.  

The efficient and guaranteed simultaneous execution of sending and receiving operations may be achieved 
by means of the function MPI_Sendreceive: 

int MPI_Sendrecv(void *sbuf,int scount,MPI_Datatype stype,int dest,  
  int  stag, void *rbuf,int rcount,MPI_Datatype rtype,int source,int rtag,  
    MPI_Comm comm, MPI_Status *status),  
where 
- sbuf, scount, stype, dest,   stag – the parameters of the sent message, 
- rbuf, rcount, rtype, source, rtag – the parameters of the received message, 
- comm   - the communicator within which the data transmission is performed, 
- status – the structure of the data, which contains the control information 
           of the function execution result. 

As you can see from the description of the function MPI_Sendrecv sends the messages described by the 
parameters (sbuf, scount, stype, dest, stag) to the process with the rank dest and receives a message to the buffer 
defined by the parameters (rbuf, rcount, rtype, source, rtag), from the process with the rank source. 

There are different buffers for sending and receiving messages in the function MPI_Sendrecv.  In case if the 
messages are of the same type, MPI provides an opportunity to use the single buffer:  

int MPI_Sendrecv_replace (void *buf, int count, MPI_Datatype type,  
  int dest,int stag,int source,int rtag,MPI_Comm comm,MPI_Status* status); 

Let us use this function to perform the cyclic shift of the blocks of the matrix. Each process sends a 
message to the previous process of the same processor grid column and receives a message from the next 
process. The processes located in the first row of the processor grid sends its block to the process located in the 
last row (the row with the number GridSize-1). 

// Function for cyclic shifting the blocks of the matrix B  
void BblockCommunication (double *pBblock, int BlockSize,  
  MPI_Comm ColumnComm) { 
  MPI_Status Status; 
  int NextProc = GridCoords[0] + 1; 
  if ( GridCoords[0] == GridSize-1 ) NextProc = 0; 
  int PrevProc = GridCoords[0] - 1; 
  if ( GridCoords[0] == 0 ) PrevProc = GridSize-1; 
 
  MPI_Sendrecv_replace( pBblock, BlockSize*BlockSize, MPI_DOUBLE, 
    NextProc, 0, PrevProc, 0, ColumnComm, &Status); 
} 

Let us test the correctness of this stage execution. Let us restore the call of the function for cyclic shifting 
of the blocks of the matrix B (BblockCommunication) in the function ParallelResultCalculation (delete the 
comment signs in the calling line). Also let us eliminate the printing ofthe blocks of the matrix A. After the 
execution of shifting the blocks of the matrix B, let us add printing out the blocks pBblock on all the processors:   

// Function for parallel execution of the Fox method 
void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  
  double* pBblock, double* pCblock, int BlockSize) { 
  for (int iter = 0; iter < GridSize; iter ++) { 
    // Sending blocks of matrix A to the process grid rows  
    ABlockCommunication(iter, pAblock, pMatrixAblock, BlockSize); 
 
    // Block multiplication 
    // BlockMultiplication ( pAblock, pBblock, pCblock, BlockSize ); 
 
    // Cyclic shift of blocks of matrix B in process grid columns  
    BblockCommunication ( pBblock, BlockSize, ColComm ); 
    if (ProcRank == 0)  
      printf((“Iteration number %d \n”, iter); 
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    TestBlocks(pAblock, BlockSize, “Block of B matrix”); 
 
  } 
} 

Compile and run the application using 9 processes. Check the correctness of shifting blocks of the the 
matrix B (blocks must be shifted by 1 upward along the processor grid column at each iteration). For this 
purpose compare the blocks located on processes at each iteration of the Fox algorithm with the blocks located 
on processes after the execution of the function DataDistribution.  

 Task 9 – Implement the Matrix Block Multiplication 

After we have sent the matrix A blocks, it is necessary to execute the multiplication of the block pAblock by 
the block pBblock. Then we should add the product to the block pCblock. In order to multiply the matrix blocks 
on each of the process, it is necessary to execute the serial matrix multiplication algorithm for the blocks pAblock 
and pBblock of size BlockSize×BlockSize. For this purpose we can use the function SerialResultCalculation, 
which was developed in the course of the implementation of the serial matrix multiplication algorithm (Exercise 
1). 

// Function for block multiplication 
void BlockMultiplication(double* pAblock, double* pBblock,  
  double* pCblock, int Size) { 
  SerialResultCalculation(pAblock, pBblock, pCblock, Size); 
} 

After the execution of GridSize iterations of the Fox algorithm, the block of the result matrix is located on 
each process. To check the correctness of the algorithm execution before gathering data, we will print out the 
obtained blocks of the result matrix C by means of the function TestBlocks (let us delete the debugging print of 
the results of the initial block broadcast and the debugging print of algorithm iteration execution from the 
parallel application code): 

void main(int argc, char* argv[]) { 
  <…> 
  // Memory allocation and initialization of matrix elements 
  ProcessInitialization ( pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  
    pCblock, pMatrixAblock, Size, BlockSize ); 
 
  DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock,  
    Size, BlockSize); 
 
  // Execution of Fox method 
  ParallelResultCalculation(pAblock, pMatrixAblock, pBblock, pCblock, 
    BlockSize); 
  TestBlocks(pCblock, BlockSize, “Result blocks”); 
 
  // Process Termination 
  ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock, 
    pCblock, pMatrixAblock); 
 
  MPI_Finalize(); 
} 

In order to determine the initial matrices elements in the function ProcessInitialization we will again use 
the function DummyDataInitialization. The blocks of the result matrix, located on all the processes, must consist 
of the elements, which are equal to the value Size of the initial matrices (Figure 2.15). 

Compile and run the application. Set different sizes of the initial matrices. Make sure that the results of the 
Fox algorithm execution are correct.  



 
Figure. 2.15. The Blocks of the Result Matrix Computed Using the Fox Algorithm 

 Task 10 – Gather the Results 

The procedure of gathering the results repeats the procedure of initial data distribution. The difference 
consists in the fact that all the stages must be executed in the reverse order. First, it is necessary to gather the 
blocks located on the processes of one process grid row into stripes of the result matrix. Then it is necessary to 
gather the stripes located on the left process grid column into the matrix.  

In order to gather the result matrix we will use the function MPI_Gather of the MPI library. This function 
gathers the data from all the processes in the communicator onto one process. The function operations are 
opposite to the operations of the function MPI_Scatter. The function MPI_Gather has the following heading: 

int MPI_Gather(void *sbuf,int scount,MPI_Datatype stype, 
  void *rbuf,int rcount,MPI_Datatype rtype, int root, MPI_Comm comm), 
where 
- sbuf, scount, stype – the parameters of the message being sent, 
- rbuf, rcount, rtype – the parameters of the message to be recieved, 
- root – the rank of the process, which executes the data gather, 
- comm – the communicator, in which the data transfer is executed. 

We will implement the procedure of gathering the result matrix C in the function ResultCollection: 

// Function for gathering the result matrix 
void ResultCollection (double* pCMatrix, double* pCblock, int Size,  
  int BlockSize) { 
  double * pResultRow = new double [Size*BlockSize]; 
  for (int i=0; i<BlockSize; i++) { 
    MPI_Gather( &pCblock[i*BlockSize], BlockSize, MPI_DOUBLE, 
      &pResultRow[i*Size], BlockSize, MPI_DOUBLE, 0, RowComm); 
  } 
 
  if (GridCoords[1] == 0) { 
    MPI_Gather(pResultRow, BlockSize*Size, MPI_DOUBLE, pCMatrix,  
      BlockSize*Size, MPI_DOUBLE, 0, ColComm); 
  } 
  delete [] pResultRow; 
} 

Let us add the call of the function ResultCollection instead of the call of the function of testing the partial 
results by means of the debugging print (TestBlocks). In order to control the correctness of data gather and the 
program execution in general we will print the result matrix pCMatrix on the root process using the function 
PrintMatrix. 

void main(int argc, char* argv[]) { 
  <…> 
  // Execution of Fox method 
  ParallelResultCalculation(pAblock, pMatrixAblock, pBblock, pCblock, 
    BlockSize); 
 
  // Gathering the result matrix 
  ResultCollection(pCMatrix, pCblock, Size, BlockSize); 
  if (ProcRank == 0) { 
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    printf(“Result matrix \n”); 
    PrintMatrix(pCMatrix, Size, Size); 
  } 
 
  // Process Termination 
  ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock, 
    pCblock, pMatrixAblock); 
 
  MPI_Finalize(); 
} 

Compile and run the application. Test the correctness of the program execution. It should be noted that if 
the initial data is generated by means of the function DummyDataInitialization, all the elements of the result 
matrix should be equal to the value Size (Figure 2.16). 

 
Figure. 2.16. The Test Result of the Matrix Multiplication 

 Task 11 – Test the Parallel Program Correctness  

After we have executed the function of gathering, it is necessary to check the correctness of the program 
execution. For this purpose we will develop the function TestResult, which will compare the results of the serial 
and parallel algorithms. In order to execute the serial algorithm it is possible to use the function 
SerialResultCalculation, which was developed in Exercise 2. The result of this function will be stored in the 
matrix pSerialResult. Then we will compare element by element this matrix to the matrix pCMatrix, which was 
obtained by means of the parallel program. In order to obtain each element of the result matrix, it is necessary to 
execute serial multiplication and summation of real numbers. The order of executing these operations can 
influence the machine inaccuracy of computations and its value. That is why it is impossible to check of the 
matrix elements are identical or not. Let us introduce the allowed divergence value of the serial and parallel 
algorithm results – the value Accuracy. The matrices are assumed to be the same if the corresponding elements 
differ by no more than the value of the allowed error Accuracy. 

The function TestResult must have the access to the initial matrices pАMatrix, pBMatrix and pCMatrix,  
and therefore, can be executed only on the root process: 

// Function for testing the matrix multiplication result 
void TestResult(double* pAMatrix, double* pBMatrix, double* pCMatrix,  
  int Size) { 
  double* pSerialResult;   // Result matrix of serial multiplication 
  double Accuracy = 1.e-6; // Comparison accuracy 
  int equal = 0;           // =1, if the matrices are not equal 
  int i;                   // Loop variable 
 
  if (ProcRank == 0) { 
    pSerialResult = new double [Size*Size]; 
    for (i=0; i<Size*Size; i++) { 
      pSerialResult[i] = 0; 
    } 
    SerialResultCalculation(pAMatrix, pBMatrix, pSerialResult, Size); 
    for (i=0; i<Size*Size; i++) { 
      if (fabs(pSerialResult[i]-pCMatrix[i]) >= Accuracy) 
        equal = 1; 
    } 
    if (equal == 1)  
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      printf("The results of serial and parallel algorithms " 
             "are NOT identical. Check your code."); 
    else 
      printf("The results of serial and parallel algorithms " 
             "are identical."); 
    delete [] pSerialResult; 
  } 
} 

The results of the function execution are the print of the diagnostic message. It is possible to check the 
results of the parallel program execution using this message regardless of the initial object size in case of any 
values of the initial data.  

Transform into comment the calls of the functions, using the debugging print. Those function calls have 
been previously used for checking the correctness of parallel program execution. Instead of the function 
DummyDataInitialization, which generates matrices of simple type, call the function RandomDataInitialization, 
which generates the matrix by means of the random data generator. Compile and run the application. Set various 
amounts of the initial data. Make sure that the application is functioning properly. 

 Task 12 – Carry out Computational Experiments  
Let us determine the parallel algorithm execution time. For this purpose add clocking to the program code. 

As the parallel program includes the stage of data distribution, the computation of the result block on each 
process and result gather, the timing should start immediately before the call of the function DataDistribution 
and stop right after the execution of the function ResultCollection:  

  <…> 
  Start = MPI_Wtime(); 
  DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock,  
    Size, BlockSize); 
 
  // Execution of the Fox method 
  ParallelResultCalculation(pAblock, pMatrixAblock, pBblock, pCblock, 
    BlockSize); 
 
  ResultCollection(pCMatrix, pCblock, Size, BlockSize); 
  Finish = MPI_Wtime(); 
  Duration = Finish-Start; 
 
  TestResult(pAMatrix, pBMatrix, pCMatrix, Size); 
  if (ProcRank == 0) { 
    printf(“Time of execution = %f\n”, Duration); 
  } 
 
  ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock, 
    pCblock, pMatrixAblock); 
 
  MPI_Finalize(); 

It is obvious that this way we will print the time spent on the execution of the calculations done by the root 
process (the process with the rank 0). The execution time for other processes may slightly differ from it. At the 
stage of developing the parallel algorithm we paid special attention to the equal load (balancing) of the 
processes. Therefore, now we have good reason to believe that the algorithm execution time for the other 
processes differs from that of the root process insignificantly.  

Add the marked code fragment to the body of the main application function. Compile and run the 
application. Fill out the table: 

Table 2.3. Execution Time of the Fox Algorithm of Matrix Multiplication and the Obtained Speed Up 

Parallel Algorithm  
4 processors 9 processors Test Number Matrix Size Serial Algorithm 

Time  Speed up Time  Speed up 
1 10      
2 100      
3 500      



4 1,000      
5 1,500      
6 2,000      
7 2,500      
8 3,000      

Give the serial algorithm execution time in the column “Serial algorithm”. The time must be measured in 
the course of testing the serial application in Exercise 2. In order to calculate the speed up, divide the serial 
algorithm execution time by the parallel algorithm execution time. Place the results in the corresponding column 
of the table.  

In order to estimate the execution time of the parallel algorithm implemented according to the 
computational scheme, which was given in Exercise 3, you may use the following expression:  

( ) )/)/()()1(log()]/(1/2)/[( 2
2
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(the detailed derivation of the formula is given in Section 8 “Parallel Algorithms of Matrix Multiplication” of the 
training material). Here n is the matrix size, p is the number of processes, q is the size of the processor grid, τ is 
the execution time for a basic computational operation (this value has been computed in the course of testing the 
serial algorithm), α is the latency, and β is the bandwidth of the data transmission network. The values obtained 
in the course of carrying out the Compute Cluster Server Lab 2 "Carrying out Jobs under Microsoft Compute 
Cluster Server 2003"  should be used as the latency and the bandwidth.  

Calculate the theoretical execution time for the parallel algorithm according to formula (2.5). Tabulate the 
results in the following way (Table 2.4): 

Table 2.4. The Comparison of the Parallel Experiment Execution Time to the Theoretically Calculated 
Execution Time 

4 processors 9 processors Test Number Matrix Sizes Model Experiment Model Experiment  
1 10     
2 100     
3 500     
4 1,000     
5 1,500     
6 2,000     
7 2,500     
8 3,000     

Discussions  

• How great is the difference between the execution time of the serial and the parallel algorithms? Why? 
• Has there any speed up been obtained in case when the matrix size was 10 x 10? Why? 
• Are the theoretical and the experiment execution time values congruent? What may be the cause of 

incongruity? 
 

Exercises  

1. Modify the developed Fox algorithm implementation using the derived MPI data type for broadcasting 
and gathering matrix blocks (see Section 4 “Parallel programming with MPI”).  

2. Study the parallel algorithm of matrix multiplication based on block striped matrix partitioning. Develop 
a program implementation of this algorithm. 

3. Study the Cannon parallel algorithm of matrix multiplication based on chessboard block matrix 
partitioning.  Develop a program implementation of this algorithm. 
 

 Appendix 1. The Program Code of the Serial Application for Matrix 
Multiplication  

#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 
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#include <time.h> 
 
// Function for simple initialization of matrix elements 
void DummyDataInitialization (double* pAMatrix,double* pBMatrix,int Size) { 
  int i, j;  // Loop variables 
 
  for (i=0; i<Size; i++)  
    for (j=0; j<Size; j++) { 
      pAMatrix[i*Size+j] = 1; 
      pBMatrix[i*Size+j] = 1; 
  } 
} 
 
// Function for random initialization of matrix elements 
void RandomDataInitialization (double* pAMatrix, double* pBMatrix,  
  int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  for (i=0; i<Size; i++)  
    for (j=0; j<Size; j++) { 
      pAMatrix[i*Size+j] = rand()/double(1000); 
      pBMatrix[i*Size+j] = rand()/double(1000); 
  } 
} 
 
// Function for memory allocation and initialization of matrix elements 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, int &Size) { 
  // Setting the size of matrices 
  do { 
    printf("\nEnter the size of matrices: "); 
    scanf("%d", &Size); 
    printf("\nChosen matrices' size = %d\n", Size); 
    if (Size <= 0) 
      printf("\nSize of objects must be greater than 0!\n"); 
  } 
  while (Size <= 0); 
 
  // Memory allocation  
  pAMatrix = new double [Size*Size]; 
  pBMatrix = new double [Size*Size]; 
  pCMatrix = new double [Size*Size]; 
 
  // Initialization of matrix elements 
  DummyDataInitialization(pAMatrix, pBMatrix, Size); 
  for (int i=0; i<Size*Size; i++) { 
    pCMatrix[i] = 0; 
  } 
} 
 
// Function for formatted matrix output 
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) { 
  int i, j; // Loop variables 
  for (i=0; i<RowCount; i++) { 
    for (j=0; j<ColCount; j++) 
      printf("%7.4f ", pMatrix[i*RowCount+j]); 
      printf("\n"); 
  } 
} 
 
// Function for matrix multiplication 
void SerialResultCalculation(double* pAMatrix, double* pBMatrix,  
  double* pCMatrix, int Size) { 
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  int i, j, k;  // Loop variables 
  for (i=0; i<Size; i++) {  
    for (j=0; j<Size; j++) 
      for (k=0; k<Size; k++) 
        pCMatrix[i*Size+j] += pAMatrix[i*Size+k]*pBMatrix[k*Size+j]; 
  } 
} 
 
// Function for computational process termination 
void ProcessTermination (double* pAMatrix, double* pBMatrix,  
  double* pCMatrix) { 
  delete [] pAMatrix; 
  delete [] pBMatrix; 
  delete [] pCMatrix; 
} 
 
void main() { 
  double* pAMatrix;  // First argument of matrix multiplication 
  double* pBMatrix;  // Second argument of matrix multiplication 
  double* pCMatrix;  // Result matrix 
  int Size;          // Size of matrices 
  time_t start, finish; 
  double duration; 
 
  printf("Serial matrix multiplication program\n"); 
  // Memory allocation and initialization of matrix elements 
  ProcessInitialization(pAMatrix, pBMatrix, pCMatrix, Size); 
 
  // Matrix output 
  printf ("Initial A Matrix \n");  
  PrintMatrix(pAMatrix, Size, Size); 
  printf("Initial B Matrix \n"); 
  PrintMatrix(pBMatrix, Size, Size); 
 
  // Matrix multiplication 
  start = clock(); 
  SerialResultCalculation(pAMatrix, pBMatrix, pCMatrix, Size); 
  finish = clock(); 
  duration = (finish-start)/double(CLOCKS_PER_SEC); 
   
  // Printing the result matrix 
  printf ("\n Result Matrix: \n"); 
  PrintMatrix(pCMatrix, Size, Size); 
 
  // Printing the time spent by matrix multiplication 
  printf("\n Time of execution: %f\n", duration); 
 
  // Computational process termination 
  ProcessTermination(pAMatrix, pBMatrix, pCMatrix); 
} 

  Appendix 2. The Program Code of Parallel Application for Matrix 
Multiplication  

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <mpi.h> 
 
int ProcNum = 0;      // Number of available processes  
int ProcRank = 0;     // Rank of current process 
int GridSize;         // Size of virtual processor grid 
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int GridCoords[2];    // Coordinates of current processor in grid 
MPI_Comm GridComm;    // Grid communicator 
MPI_Comm ColComm;     // Column communicator 
MPI_Comm RowComm;     // Row communicator 
 
/// Function for simple initialization of matrix elements 
void DummyDataInitialization (double* pAMatrix, double* pBMatrix,int Size){ 
  int i, j;  // Loop variables 
 
  for (i=0; i<Size; i++)  
    for (j=0; j<Size; j++) { 
      pAMatrix[i*Size+j] = 1; 
      pBMatrix[i*Size+j] = 1; 
  } 
} 
 
// Function for random initialization of matrix elements 
void RandomDataInitialization (double* pAMatrix, double* pBMatrix,  
  int Size) { 
  int i, j;  // Loop variables 
  srand(unsigned(clock())); 
  for (i=0; i<Size; i++)  
    for (j=0; j<Size; j++) { 
      pAMatrix[i*Size+j] = rand()/double(1000); 
      pBMatrix[i*Size+j] = rand()/double(1000); 
  } 
} 
 
// Function for formatted matrix output 
void PrintMatrix (double* pMatrix, int RowCount, int ColCount) { 
  int i, j; // Loop variables 
  for (i=0; i<RowCount; i++) { 
    for (j=0; j<ColCount; j++) 
      printf("%7.4f ", pMatrix[i*ColCount+j]); 
    printf("\n"); 
  } 
} 
 
// Function for matrix multiplication 
void SerialResultCalculation(double* pAMatrix, double* pBMatrix,  
  double* pCMatrix, int Size) { 
  int i, j, k;  // Loop variables 
  for (i=0; i<Size; i++) {  
    for (j=0; j<Size; j++) 
      for (k=0; k<Size; k++) 
        pCMatrix[i*Size+j] += pAMatrix[i*Size+k]*pBMatrix[k*Size+j]; 
  } 
} 
 
// Function for block multiplication 
void BlockMultiplication(double* pAblock, double* pBblock,  
  double* pCblock, int Size) { 
  SerialResultCalculation(pAblock, pBblock, pCblock, Size); 
} 
 
// Function for creating the two-dimensional grid communicator  
// and communicators for each row and each column of the grid 
void CreateGridCommunicators() { 
  int DimSize[2];  // Number of processes in each dimension of the grid 
  int Periodic[2]; // =1, if the grid dimension should be periodic 
  int Subdims[2];  // =1, if the grid dimension should be fixed 
   
  DimSize[0] = GridSize;  
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  DimSize[1] = GridSize; 
  Periodic[0] = 0; 
  Periodic[1] = 0; 
 
  // Creation of the Cartesian communicator  
  MPI_Cart_create(MPI_COMM_WORLD, 2, DimSize, Periodic, 1, &GridComm); 
 
  // Determination of the cartesian coordinates for every process  
  MPI_Cart_coords(GridComm, ProcRank, 2, GridCoords); 
   
  // Creating communicators for rows 
  Subdims[0] = 0;  // Dimensionality fixing 
  Subdims[1] = 1;  // The presence of the given dimension in the subgrid 
  MPI_Cart_sub(GridComm, Subdims, &RowComm); 
   
  // Creating communicators for columns 
  Subdims[0] = 1; 
  Subdims[1] = 0; 
  MPI_Cart_sub(GridComm, Subdims, &ColComm); 
} 
 
// Function for memory allocation and data initialization 
void ProcessInitialization (double* &pAMatrix, double* &pBMatrix,  
  double* &pCMatrix, double* &pAblock, double* &pBblock, double* &pCblock,  
  double* &pTemporaryAblock, int &Size, int &BlockSize ) { 
  if (ProcRank == 0) { 
    do { 
      printf("\nEnter the size of matrices: "); 
      scanf("%d", &Size); 
   
      if (Size%GridSize != 0) { 
        printf ("Size of matrices must be divisible by the grid size!\n"); 
      } 
    } 
    while (Size%GridSize != 0); 
  } 
  MPI_Bcast(&Size, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 
  BlockSize = Size/GridSize; 
 
  pAblock = new double [BlockSize*BlockSize]; 
  pBblock = new double [BlockSize*BlockSize]; 
  pCblock = new double [BlockSize*BlockSize]; 
  pTemporaryAblock = new double [BlockSize*BlockSize]; 
 
  for (int i=0; i<BlockSize*BlockSize; i++) { 
    pCblock[i] = 0; 
  } 
  if (ProcRank == 0) { 
    pAMatrix = new double [Size*Size]; 
    pBMatrix = new double [Size*Size]; 
    pCMatrix = new double [Size*Size]; 
    DummyDataInitialization(pAMatrix, pBMatrix, Size); 
    //RandomDataInitialization(pAMatrix, pBMatrix, Size); 
  }  
} 
 
// Function for checkerboard matrix decomposition 
void CheckerboardMatrixScatter(double* pMatrix, double* pMatrixBlock,  
  int Size, int BlockSize) { 
  double * MatrixRow = new double [BlockSize*Size]; 
  if (GridCoords[1] == 0) { 
    MPI_Scatter(pMatrix, BlockSize*Size, MPI_DOUBLE, MatrixRow,  
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      BlockSize*Size, MPI_DOUBLE, 0, ColComm); 
  } 
 
  for (int i=0; i<BlockSize; i++) { 
    MPI_Scatter(&MatrixRow[i*Size], BlockSize, MPI_DOUBLE,  
      &(pMatrixBlock[i*BlockSize]), BlockSize, MPI_DOUBLE, 0, RowComm); 
  } 
  delete [] MatrixRow; 
} 
 
// Data distribution among the processes 
void DataDistribution(double* pAMatrix, double* pBMatrix, double*  
  pMatrixAblock, double* pBblock, int Size, int BlockSize) { 
  // Scatter the matrix among the processes of the first grid column 
  CheckerboardMatrixScatter(pAMatrix, pMatrixAblock, Size, BlockSize); 
  CheckerboardMatrixScatter(pBMatrix, pBblock, Size, BlockSize); 
} 
 
// Function for gathering the result matrix 
void ResultCollection (double* pCMatrix, double* pCblock, int Size,  
  int BlockSize) { 
  double * pResultRow = new double [Size*BlockSize]; 
  for (int i=0; i<BlockSize; i++) { 
    MPI_Gather( &pCblock[i*BlockSize], BlockSize, MPI_DOUBLE,  
      &pResultRow[i*Size], BlockSize, MPI_DOUBLE, 0, RowComm); 
  } 
 
  if (GridCoords[1] == 0) { 
    MPI_Gather(pResultRow, BlockSize*Size, MPI_DOUBLE, pCMatrix,  
      BlockSize*Size, MPI_DOUBLE, 0, ColComm); 
  } 
  delete [] pResultRow; 
} 
 
// Broadcasting blocks of the matrix A to process grid rows  
void ABlockCommunication (int iter, double *pAblock, double* pMatrixAblock,  
  int BlockSize) { 
 
  // Defining the leading process of the process grid row  
  int Pivot = (GridCoords[0] + iter) % GridSize; 
   
  // Copying the transmitted block in a separate memory buffer 
  if (GridCoords[1] == Pivot) { 
    for (int i=0; i<BlockSize*BlockSize; i++) 
      pAblock[i] = pMatrixAblock[i]; 
  } 
   
  // Block broadcasting 
  MPI_Bcast(pAblock, BlockSize*BlockSize, MPI_DOUBLE, Pivot, RowComm); 
} 
 
// Function for cyclic shifting the blocks of the matrix B  
void BblockCommunication (double *pBblock, int BlockSize) { 
  MPI_Status Status; 
  int NextProc = GridCoords[0] + 1; 
  if ( GridCoords[0] == GridSize-1 ) NextProc = 0; 
  int PrevProc = GridCoords[0] - 1; 
  if ( GridCoords[0] == 0 ) PrevProc = GridSize-1; 
 
  MPI_Sendrecv_replace( pBblock, BlockSize*BlockSize, MPI_DOUBLE, 
    NextProc, 0, PrevProc, 0, ColComm, &Status); 
} 
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// Function for parallel execution of the Fox method 
void ParallelResultCalculation(double* pAblock, double* pMatrixAblock,  
  double* pBblock, double* pCblock, int BlockSize) { 
  for (int iter = 0; iter < GridSize; iter ++) { 
    // Sending blocks of matrix A to the process grid rows  
    ABlockCommunication (iter, pAblock, pMatrixAblock, BlockSize); 
    // Block multiplication 
    BlockMultiplication(pAblock, pBblock, pCblock, BlockSize); 
    // Cyclic shift of blocks of matrix B in process grid columns  
    BblockCommunication(pBblock, BlockSize); 
  } 
} 
 
// Test printing of the matrix block 
void TestBlocks (double* pBlock, int BlockSize, char str[]) { 
  MPI_Barrier(MPI_COMM_WORLD); 
  if (ProcRank == 0) { 
    printf("%s \n", str); 
  } 
  for (int i=0; i<ProcNum; i++) { 
    if (ProcRank == i) { 
      printf ("ProcRank = %d \n", ProcRank); 
      PrintMatrix(pBlock, BlockSize, BlockSize); 
    } 
    MPI_Barrier(MPI_COMM_WORLD); 
  } 
} 
 
// Function for testing the matrix multiplication result 
void TestResult(double* pAMatrix, double* pBMatrix, double* pCMatrix,  
  int Size) { 
  double* pSerialResult;     // Result matrix of serial multiplication 
  double Accuracy = 1.e-6;   // Comparison accuracy 
  int equal = 0;             // =1, if the matrices are not equal 
  int i;                     // Loop variable 
 
  if (ProcRank == 0) { 
    pSerialResult = new double [Size*Size]; 
    for (i=0; i<Size*Size; i++) { 
      pSerialResult[i] = 0; 
    } 
    BlockMultiplication(pAMatrix, pBMatrix, pSerialResult, Size); 
    for (i=0; i<Size*Size; i++) { 
      if (fabs(pSerialResult[i]-pCMatrix[i]) >= Accuracy) 
        equal = 1; 
    } 
    if (equal == 1)  
      printf("The results of serial and parallel algorithms are NOT"  
             "identical. Check your code."); 
    else 
      printf("The results of serial and parallel algorithms are " 
             "identical. "); 
  } 
} 
 
// Function for computational process termination 
void ProcessTermination (double* pAMatrix, double* pBMatrix,  
  double* pCMatrix, double* pAblock, double* pBblock, double* pCblock, 
  double* pMatrixAblock) { 
  if (ProcRank == 0) { 
    delete [] pAMatrix;  
    delete [] pBMatrix; 
    delete [] pCMatrix;  
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  } 
  delete [] pAblock; 
  delete [] pBblock; 
  delete [] pCblock; 
  delete [] pMatrixAblock; 
} 
 
void main(int argc, char* argv[]) { 
  double* pAMatrix;  // First argument of matrix multiplication 
  double* pBMatrix;  // Second argument of matrix multiplication 
  double* pCMatrix;  // Result matrix 
  int Size;          // Size of matrices 
  int BlockSize;     // Sizes of matrix blocks 
  double *pAblock;   // Initial block of matrix A 
  double *pBblock;   // Initial block of matrix B 
  double *pCblock;   // Block of result matrix C 
  double *pMatrixAblock; 
  double Start, Finish, Duration; 
 
  setvbuf(stdout, 0, _IONBF, 0); 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  GridSize = sqrt((double)ProcNum); 
  if (ProcNum != GridSize*GridSize) { 
    if (ProcRank == 0) { 
      printf ("Number of processes must be a perfect square \n"); 
    } 
  } 
  else { 
    if (ProcRank == 0) 
      printf("Parallel matrix multiplication program\n"); 
 
    // Creating the cartesian grid, row and column communcators  
    CreateGridCommunicators(); 
   
    // Memory allocation and initialization of matrix elements 
    ProcessInitialization ( pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  
      pCblock, pMatrixAblock, Size, BlockSize ); 
 
 
    DataDistribution(pAMatrix, pBMatrix, pMatrixAblock, pBblock, Size,  
      BlockSize); 
 
    // Execution of the Fox method 
    ParallelResultCalculation(pAblock, pMatrixAblock, pBblock,  
      pCblock, BlockSize); 
 
    // Gathering the result matrix 
    ResultCollection(pCMatrix, pCblock, Size, BlockSize); 
 
    TestResult(pAMatrix, pBMatrix, pCMatrix, Size);  
 
    // Process Termination 
    ProcessTermination (pAMatrix, pBMatrix, pCMatrix, pAblock, pBblock,  
      pCblock, pMatrixAblock); 
  } 
 
  MPI_Finalize(); 
} 
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